

Single Photon Generation & Application in Quantum Cryptography

- Single Photon Sources
- Photon Cascades
- Quantum Cryptography

Spontaneous emission (single emitters)

- atoms, molecules, quantum dots, defect centers
- optical, electrical and STIRAP excitation

M: Brunel et al., PRL 83, 2722 (1999) Lounis & Moerner, Nature 407, 491 (2000)

DC: Kurtsiefer et al., PRL 85, 290 (2000) Beveratos et al., PRA 64, 061802(R) (2001) QD: Kim et al., Nature 397, 500 (1999) Michler et al., Science 290, 2282 (2000) Santori et al., PRL 86, 1502 (2001) Yuan et al., Science 295, 102 (2002)

Single Photon Sources Quantum Dots

Transmission electron microscope images

K. Georgsson et al., Appl. Phys. Lett. 67, 2981 (1995)

Atomic force microscope image

Contains ~10000 atoms InP dots grown on GaInP

Single Photon Sources Quantum Dots

Photoluminescence of an ensemble of InAs quantum dots

Photoluminescence image of a set of InP quantum dots

Single Photon Sources Quantum Dots

Specific advantages of single quantum dots

- Stability
- Compatible with chip-technology
- Wide spectral range
- Electrical Pumping
- High repetition rate
- Strong interactions "available"

Specific disadvantages of single quantum dots

- Low temperature operation
- Non-uniformity
- Device production yield
- Decoherence
- Efficiency

Single Photon Sources Experimental Setup

SPS

Single Photon Sources Experimental Setup

- Emission around 690 nm
 (@ maximum detection efficiency of Si detectors)
- Lifetime around 1 ns
- Dot density: 10⁸ cm⁻² through 2 nm bandpass filter
- \bullet Linewidth around 100 μeV

Single Photon Sources Intensity Correlation Measurements

- Central peak vanishes nearly completely
- ⇒ generation of only one photon per pulse
- Single photon generation observed up to 40 K

Single Photon Sources Wave and Particle Aspects

T. Aichele, et al., AIP proc. Vol. 750, 35 (2005) V. Jacques, et al. Eur. Phys. J. D 35, 561 (2005) J. T. Höffges, et al. *Opt. Comm.*, 133, 170–174 (1997)

Photon Cascades Cascaded Emission

Different energy of exciton, biexciton, triexciton, ... due to Coulomb interaction

Spectra and anti-bunching in photon cascades:

Photon Cascades Cascaded Emission

Correlation measurements reveal dynamics of multiphoton cascades

- J. Persson et al., Phys. Rev. B 69, 233314 (2004)
- D. V. Regelmann, et al. Phys. Rev. Lett. 87, 257401 (2001)
- E. Moreau et al., Phys. Rev. Lett. 87, 163601 (2001)
- A. Kiraz et al. Phys. Rev. B 65, 161303 (2002)

Photon Cascades Single Photon Multiplexing

Separating spectral lines using a Michelson interferometer

One quantum emitter acts as two independent single photon sources.

Delaying the two photons by half the excitation repetition time doubles the photon rate.

Quantum Cryptography The BB84 Protocol

Bennett, Brassard, Proc. IEEE Int. Conf. on Computers, Systems & Signal Processing (1984), First realization with QDs: Waks et al., Nature 420, 762 (2002)

• Alice sends randomly polarized photons (0, 45, 90 or 135°) to Bob.

• Bob randomly measures in the straight or diagonal base.

$++\times\times+\times\times+$

• Bob keeps his results secret.

1-//-///

• Bob publically tells his measurement bases (not the results!). Alice publically tells him if he chose the right base.

Quantum Cryptography Multiplexed Quantum Cryptography

Quantum Cryptography Multiplexed Quantum Cryptography

Transmission to Bob: 30 successfull counts/s at a laser modulation of 20 kHz Similarity between Alice's and Bob's keys: 95%

T. Aichele, G. Reinaudi, O. Benson, Phys. Rev. B, 70, 235329 (2004)